
Introducing PROS 3
GIT / GIThub

by

Willem Scholten

Learning Access Institute

Revision: 07/01/2019
1

• Copyright © 2019 by the Learning Access Institute / Willem
Scholten

• All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic or
mechanical methods, without the prior written permission of the
publisher, except in the case of brief quotations embodied in
critical reviews and certain other noncommercial uses permitted
by copyright law.

• All material contained within this publication, including referred
to software samples, are for the soul use by institutions
participating in the CWU GEARUP robotics program, and as
such have been granted permission to share, reproduce this
material for the benefit of their students.

2

PROS 3 Intro

• The Introduction to PROS 3 is a collection separate
guides which cover the various fundamental aspects for
students to be successful in using the PROS 3
development environment to program either a Cortex or
V5 based robot.

• These guides cover the programming language and
commands, as well as the tool sets to create and
maintain code in a professional manner.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019
3

PROS 3 Intro
• List of Guides:

• C/C++ Language Guide

• Cortex Programming Guide

• V5 Programming Guide

• PROS 3 Interface Guide

• GIT/GIThub guide

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019
4

gitHUB Access

• Sample code repositories for learning the Cortex (and the
V5) can be cloned from the following URL:

• https://github.com/sprobotics

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019
5

gitHUB Access
• What is Git and gitHUB:

• Git is the client that manages version / source control, and is
installed on your development machine.

• Git has versions for most operating systems, including
Windows, MAC OS and Linux

• Git interacts with the central hosted Git repository.

• A Git repository most typically lives on gitHUB a cloud based
repository service, in larger companies a private in house
repository server may exists.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019
6

gitHUB Access

Source Code

Edits

writes delta of changes to local repository

GIT

Local Repository

GIT - builds a repository of changes of
your local files, these delta’s are
stamped (uniquely identified) and allow
for the roll-back to a previous state,
using a variety of GIT commands.

It is important to note that this
repository of delta’s lives on your local
machine only

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019
7

gitHUB Access

• Interaction between Git and gitHUB:

• Git — provides source code control using repositories

• gitHUB — host the repositories, including
documentation for your team and beyond

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 8

gitHUB Access

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019

Source Code

Edits

GIT

Repository

Local to one developers
 machine

Remote Hosted
Repository

such as gitHUB

GIThub tools

Team member
Developers (1 - N)

Source Code

Edits

GIT

Repository

GIThub tools

9

gitHUB Access
• The following slides will cover increasingly in-depth how

GIT and gitHUB as well as PROS integrate and facilitate
development in teams.

• At a minimum you should think of GIT / gitHUB as a tool
set, integrated with PROS to help you safeguard your
code base against accidental loss, ‘bad code decisions’
you like to roll-back (remove)

• Yes the best practice is to learn to use to tool do
facilitate seamless multi developer code development and
sharing among sub teams.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 10

gitHUB Access

• Tools required for safe and team based development:

• GIT tools (GIT command line tools)

• gitHUB account and tool set (gitHUB client for your
machine)

• PROS 3 GIT/gitHUB integration plugin

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 11

gitHUB Access
Goto: https://github.com

Pick username,
add your email
and pick a
password

Create gitHUB repository server account:

12

gitHUB Access

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 13

gitHUB Access

Pick the free
plan

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 14

gitHUB Access

Just answer
what makes
sense

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 15

gitHUB Access
Create Repositories as needed or via Window gitHUB client

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 16

gitHUB Access

You can create an organization -
being your team, and then add
others to the repository to
submit code changes.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 17

gitHUB Access
• Installing the local Git and gitHUB clients:

• For Windows and MAC OS go to: https://
desktop.github.com/

• For Linux - depending on your distribution you may
want to install gitKraken - available here: https://
www.gitkraken.com/download

• There are also gitHUB clients for IOS and android,
allowing you to manage your repository.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 18

gitHUB Access
• Using GIT to manage your project:

• GIT uses a process of storing ‘delta’s’ of code changes
and allows you to roll back to previous stable versions.

• GIT uses master, branches, forks and clones to give
multiple team members access to the share d code
repository and avoid ode development conflicts

• GIT publishes releases - a stable code base - ready for
distribution/production

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 19

gitHUB Access

• GIT - source code control is a
version control system designed to track
changes in source code and other text
files during the development of a piece of
software. This allows the user to retrieve
any of the previous versions of the
original source code and the changes
which are stored.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 20

gitHUB Access

• A repository, or Git project, encompasses the entire
collection of files and folders associated with a project,
along with each file’s revision history.

• The file history appears as snapshots in time called
commits, and the commits exist as a linked-list
relationship, and can be organized into multiple lines of
development called branches.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 21

gitHUB Access

Create PROS 3 Project

Create gitHUB repository

write code using PROS 3

commit changes to gitHUB repository

Simple workflow of code development using gitHUB

This method works well when it is
a single person working on the
code, it allows you to track your
changes, publish simple releases
(v1.0, 1.01 etc) to track your code
progress.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 22

gitHUB Access

• Using gitHUB with multiple developers working on the
same code base - this is where gitHUB / GIT’s strength
comes in, allowing each developer to work on the code
base independently - branches - and then merging all
the code together to a new agreed upon master version
to then be released.

• gitHUB helps with code conflict resolutions - two or more
developers submitting conflicting changes which need to
be resolved.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 23

gitHUB Access
Create PROS 3 Project

Create gitHUB repository (master)

branch for team member #1

commit changes to branch repository

team members check out a branch

branch for team member #2

commit changes to branch repository

write code using PROS 3 write code using PROS 3

Team members work on their
clone of the master code, make
changes, and check it in to
gitHUB in their branch code tree.

24

gitHUB Access

Create gitHUB repository (master)

merge branches into master

branch #1 branch #N

During the merge into the master,
if their are conflicts between
branches, they must be resolved
first prior to the merge being able
to succeed.

The new master after merge will
represent all agreed upon code
merges.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 25

gitHUB Access

• Once branches are merged into the master, one of two
things can happen:

• team members check out a new branch based on the
newly created master

• a release is created

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 26

gitHUB Access
• When to create a release:

• When there is solid agreed upon code base which can
be handed over to testing

• Code should always be released for deployment to a
competition day robot, so that any observations and
new code designs can be implemented on a well
defined check point during the development cycle.

• Release are solid checkpoints you can roll-back to

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 27

gitHUB Access
• A release:

• A release has a Major number and Minor Number, for
example V1.0 - indicating first full release based on the
specification.

• Code fixed or enhanced based still on the same
specifications, become minor release increments, for
example V1.1, V1.2 or V1.0.1, V1.0.2

• Code which is written as a subsequent release based on
new specification should increase the Major number, for
example: V2.0

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 28

gitHUB Access
• To Fork or Clone a project from gitHUB?

• Clone - if you are part of a small team and you are all
working on a shared agreed upon code project - typical
for a VEX robotics team.

• Fork - when you want to use a codebase in a
repository as a starting point for your own subsequent
code base - typical in a classroom - teachers code
base is forked to cached students account, and then
students use that to create their own code using
standard clone/branches/merge etc

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 29

gitHUB Access

• Forked projects can be offered back to the original
repository owner and changes pulled into the master
repository if so decided. This is a common practice in
large scale Open Source code development scenarios.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 30

gitHUB Access

According to gitHUB:

Creating a “fork” is producing a personal copy of someone else’s
project. Forks act as a sort of bridge between the original repository
and your personal copy. You can submit Pull Requests to help
make other people’s projects better by offering your changes up to
the original project. Forking is at the core of social coding at
GitHub.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 31

gitHUB Access
Navigate to the repository you want to fork: https://github.com/sprobotics/

32

gitHUB Access
Select a repository you want to fork,

Then press the ‘Fork’ button to fork the project to your personal GitHub account/repository

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 33

gitHUB Access
Once the repository has been forked to your account, you will see that the project is now in
your account (repository) and is forked form what source.

34

gitHUB Access
Once the repository has been forked to your account, you can click on the ‘Fork’ button
and see that the project is now in your account (repository) and is forked form what
source.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 35

gitHUB Access
• You may FORK sample code repositories from the following

URL at any time: https://github.com/sprobotics

• The repositories available there are all set to read-only, so
your code can not be contributed back to it. They are
however intended for students use and starting points of their
code.

• Once a project is forked, you use the same technique,
checkout a branch, make changes commit etc.

• See for additional help: https://guides.github.com/activities/
forking/

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 36

gitHUB Access

• Learning more:

• https://lab.github.com/courses

• https://services.github.com/on-demand/downloads/
github-git-cheat-sheet.pdf

• https://help.github.com

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 37

gitHUB access in PROS 3

• GIT and gitHUB directly integrate into the PROS 3
development environment through Atom and is installed
by default

• When integrated code can be directly checked into the
repository, and branches of the code managed

• You must ensure that both the following are set:
git config --global user.email “email address”
git config --global user.name “user name”

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 38

Forking / Cloning
Template PROS Project

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 39

FORK A Template Project
Step 1: login in to your gitHUB account

Step 2: Goto GitHub.com/sprobotics

Step 3: Find the repo: cortex-template

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 40

FORK A Template Project
Step 1: Click Fork

Step 2: Watch and follow prompts,
project will be forked into your repo’s

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 41

FORK A Template Project
When successful you will see your
Repos and the Forked project open
in your GitHub repo.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 42

FORK A Template Project
Step 1: Now click “Settings” for the cortex-template repo

Step 2: Goto “Options” and “Settings”

Step 3: Goto the Repo Renaming box

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 43

FORK A Template Project
Step 1: Change name and press “Rename”

Step 2: You will be taken back to main repo
page, but will notice repo name has
changed to your new name

44

Clone A Forked Template

Step 1: Now get ready to clone repository onto your
workstation to work with it.

Step 2: Click “clone or download”

Step 3: Click on clipboard to grab the URL

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 45

Clone A Forked Template
Step 1: Open gitHUB client on your workstation

Step 2: Goto File - Clone repository

46

Clone A Forked Template
Step 1: Click on the Clone by “URL”
tab

Step 2: Paste the URL from the
clipboard in the repository URL box

Step 3: Decide where to put the
repository on your local workstation

Step 4: Click Clone

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 47

Clone A Forked Template

Step 1: Goto Atom PROS

Step 2: Click on File - Add Project
Folder

48

Clone A Forked Template
Step 1: Browse to the repository folder
you just cloned and add it

49

Clone A Forked Template

When the project is added, you can
expand the >src and >include tree and
all the template field are there for you to
modify, add-to, expand etc.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019
50

Keeping a FORK updated
with upstream repository

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 51

FORK update

• Once you have a FORK’ed project repository, there
maybe times you want your FORK to be synchronized
with the original project you FORK’ed from

• This process must be undertaken with care, but can be
useful in case a new library module or other significant
improvements have been posted in the originating
repository

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 52

FORK update
• FORK update process consists of three steps:

• (1) — do a merge from original of FORK (source
repository) to your FORK repository using github web
client (http://github.com)

• (2) — Using gitHUB desktop client sync your local
development machine copy with the online
repository

• (3) — Make sure PROS has access to the newly
updated project repository master

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 53

FORK update
Step 1: Goto your repository on gitHUB (on the web)

Step 2: Click on “compare” — this will start the process for you to compare your FORK against the source
of your FORK

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 54

FORK update
Step 1: Notice that is tarts off with wanting todo a FORK compare in the wrong direction - comparing the
original FORK against your FORK. We want to do the opposite - comparing your FORK wit the original
FORK

55

FORK update
Step 1: Change the base repository to your FORK’ed repository

Step 2: Click the “compare across forks”

Step 3: Change the head repository to the source FORK

56

FORK update
Step 1: You should now see “the create pull request” button to start a pull from the FORK source repository
to be merged into your repository

Step 2: Click “Create Pull request”

57

FORK update
Step 1: Give a short reason for the pull request for your records

Step 2: Click “Create Pull request”

58

FORK update
Step 1: In this case 3 commits to the master repository - FORK original - are ready to be merged into your
repository — in some case conflicts may occur they will be shown and you will have an opportunity to
accept, edit or deny the changes

Step 2: Click “Merge Pull request”

59

FORK update
Step 1: You will be asked now to “Confirm Merge” by pressing the shown button.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 60

FORK update

• Before you refresh your local copy of the repository on
your computer, (using local gitHUB client) you are advised
to ensure that PROS has none of the source files open
in your current local repository copy.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 61

FORK update
Step 1: Make sure you point to your local repository

Step 2: Refresh “Fetch from Origin”

62

FORK update
Step 1: You should see a “Pull origin” as your master repository has changed compared to your local copy

Step 2: Click “Pull Origin” to grab the updates for your local copy

63

FORK update
Step 1: Your changes should be pulled in, you can check this activity by clicking o the “History” tab.

You now will have a new refreshed master copy with reflects the pulled in changes from the upstream FORK
original repository.

64

FORK update
Step 1: Once the merge is confirmed your repository will be Merged and the changes appleid

Next we will need to synchronize the repository from gitHUB onto your local computer using the gitHUB
desktop client

65

FORK update

• After the update of the repository on your local computer
(using the gitHUB desktop client) you can re-open it in
PROS.

• In the PROS project view you should be able to see in
specific source files changes which may have come in
from the update of your FORK wit hate upstream
repository.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 66

GIT Local Repo
versus Remote Repo

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 67

GIT local V remote Repo

• GIT (and gitHUB) manages two repositories:

• Local repository (repo) - the GIT maintained repository
on your local development machine(s)

• Remote repository (repo) - the GIT maintained in the
cloud repository for central storage, backup and
sharing

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 68

GIT local V remote Repo
• Local repository (repo):

• Tracks all changes on your local development machine

• Tracks local commits - i.e. milestones where you
record the state of your local development tree

• Allows for local changes to be rolled back

• Local repository can not be shared with fellow
developers unless synchronized with matching remote
repository

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 69

GIT local V remote Repo
• Local repository (repo) - sample GIT actions:

• git commit (commit changes to the repository)

• git stash (git-stash - Stash the changes in a dirty working directory away see: https://git-
scm.com/docs/git-stash)

• git config (configure global options for your repositories such a user.name)

• git revert (revert to a previous commit)

• git checkout (checkout a file from a previous commit - restoring the file state)

• git reset —hard (a true rollback of the state of your repo)

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 70

GIT local V remote Repo
• Remote repository (repo):

• Tracks all changes of multiple local development repositories

• Tracks project wide commits - i.e. milestones where you
record the state of various local development trees merged
back into a single master copy for further development

• Allows for local repositories to be rolled back in time,
including changes committed by other developers

• Remote repository can be shared with fellow developers as
well as shared more broadly to the community

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 71

GIT local V remote Repo

• Remote repository (repo):

• The main purpose of the remote repository is:

• facilitate team development of code base

• provide backup for the code base in the cloud

• provide for software release to wider community

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 72

GIT local V remote Repo
• Remote repository (repo):

• The most common way for establishing a remote repository are:

• gitHUB - a web based / cloud enabled remote repository
management system, tightly integrated with GIT - most
common platform

• Local GIT server - most often done in larger enterprises or
confidential development environments

• For other options see: https://www.git-tower.com/blog/git-
hosting-services-compared/

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 73

GIT local V remote Repo
• Remote repository (repo) - sample GIT actions:

• git commit (commit changes to the repository)

• git stash (git-stash - Stash the changes in a dirty working directory away see: https://git-
scm.com/docs/git-stash)

• git config (configure global options for your repositories such a user.name)

• git revert (revert to a previous commit)

• git checkout (checkout a file from a previous commit - restoring the file state)

• git reset —hard (a true rollback of the state of your repo)

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 74

GIT local V remote Repo

Local Repository
on local

development machine

Write / Change code

save code

commit changes
to

local repository

Local Machine Development Process

Local Repository is initialized

Code is developed, tested
using your favorite language/
tools (atom/PROS)

code is saved locally on your machine

Changes are committed to the
local repository, when a stable
moment in the development
cycle is reached

Commits are
recorded as
delta’s against
the previous
commit

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 75

GIT local V remote Repo

Local Repository
on local

development machine

Write / Change code

save code

commit changes
to

local repository

Synching local repository with remote repository

When a local commit is made, this
commit is also staged for a PUSH
to the remote repository - this now
shares the changes with other
developers as well as keeps the
main development tree updated

Remote repositories can be
synched to your local developer
machine using the FETCH
command, this will also pull in
other developers changes to
your local copy

Commits are
recorded as
delta’s against
the previous
commit

push commit Remote Repository
in the Cloud (gitHUB)

fetch

<commit ID>
generated

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 76

GIT local V remote Repo

• It is important to understand the interaction between
your local repository and the remote repository

• Local repository (repo) - is your local copy of your
development tree and all changes are recoded but are
only visible to you

• Remote repository (repo) - your and other developer
changes are merged and made visible to all the
developers on a project.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 77

Dropping a local
repository and starting

fresh

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 78

Dropping Repository
• There are circumstances where you want to drop the

repository form the local development machine and / or
your gitHUB repository.

• To refresh your local development copy of your
repository, may occur when you are getting to out of sync,
their is a new release posted and you want to sync to it etc

• Sometimes you want to drop everything - particularly in a
class room environment where you may want to drop your
local FORK, and start over from the instructor provided
MASTER repository

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 79

Dropping Repository
• Starting clean from an instructor provided master

repository, involves a few steps:

• (1) — remove your local development machine
repository from PROS and from your local machine

• (2) — remove the repository from your gitHUB space

• After these steps you are able to start all over, creating a
new FORK, synching your local development machine etc.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 80

Dropping Repository
Step 1: In PROS - right click on the project to drop, then select “Remove Project Folder”

81

Dropping Repository
Step 1: Go to your local desktop gitHUB application, select the repository to remove, right click, and select
‘Remove…”

82

Dropping Repository
Step 1: Follow the prompts - make sure to check “Also move the repository to Recycling Bin”

Step 2: Click “Remove”

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 83

Dropping Repository
Step 1: You can check if the repository is removed from your local machine by going not the location where
the repositories are stored, most often in Documents\GitHub

Step 2: If you still have a folder there for the repository, go ahead and delete it.

84

Dropping Repository
Step 1: Now go to the web - github.com - and go to your repositories, click on the one to remove, and click
on “Settings” tab.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 85

Dropping Repository
Step 1: Scroll to the bottom of the Settings Page and find the “Danger Zone”

Step 2: Click “Delete this repository”

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 86

Dropping Repository
Step 1: In the conformation box, retype in the name of the repository you are about to delete

Step 2: If this matches - lick the “I understand the consequences, delete this repository”

At this point you are back at the same place you original started, and you can follow again the steps to
create a new FORK, synch the FORK to your local development machine and go forward.

87

Ignoring some file in
the GIT repository

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 88

GIT .gitignore setup
• Git sees every file in your working copy as one of three

things:

• tracked - a file which has been previously staged or
committed;

• untracked - a file which has not been staged or
committed; or

• ignored - a file which Git has been explicitly told to
ignore.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 89

GIT .gitignore setup
• Ignored files are usually build artifacts and machine

generated files that can be derived from your repository
source or should otherwise not be committed. Some
common examples are:

• dependency caches, such as the contents of /
node_modules or /packages

• build output directories, such as /bin, /out, or /target

• compiled code, such as .o, .pyc, and .class files

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 90

GIT .gitignore setup

• Ignored files are tracked in a special file named .gitignore
that is checked in at the root of your repository.

• There is no explicit git ignore command: instead
the .gitignore file must be edited and committed by hand
when you have new files that you wish to ignore.

• .gitignore files contain patterns that are matched against
file names in your repository to determine whether or not
they should be ignored.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 91

GIT .gitignore setup

See here for more details: https://www.atlassian.com/git/tutorials/saving-changes/gitignore

#Things to ignore in repository
.vscode
bin
firmware

Typical .gitignore file for
a PROS V5 / Cortex
project would look like
this. It will ignore the
cache, firmware and the
various build stage and
binaries.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 92

GIT utility
and

Fixing Common Errors

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 93

GIT utilities
• For more advanced management of your local repository, it is

advised you install the GIT command line utilities.

• Some advanced use, requiring the GIT command line utility are:

• git stash (git-stash - Stash the changes in a dirty working directory away see: https://git-
scm.com/docs/git-stash)

• git config (configure global options for your repositories such a user.name)

• git revert (revert to a previous commit)

• git reset —hard (a true rollback of the state of your repo)

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 94

GIT utilities
Step 1: Install the git command line utilities from the following URL: https://git-scm.com/downloads

95

GIT utilities
Step 1: During install select “On the Desktop” — leave all other options as they are.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 96

GIT utilities
Step 1: On the final installation screen — Check “Luanch Git Bash” and Uncheck “View Release Notes”

97

GIT utilities
Step 1: Once GIT is installed open the PowerShell and type in: git —version

This should respond with the installed version in this case: git version 2.20.1.windows.1

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 98

GIT utilities
Step 1: Once GIT is installed an icon is added to the Desktop - Git Bash

In the GIT bash shell, you can now interact with your repositories, for example setting core.longpaths to true

For more GIT options and tricks see: https://git-scm.com/doc
99

GIT Long PATH error
It is possible that your local gitHUB client will complain about being unable to clone your repository due to a
“Long File Name Path Error”

This can be fixed by telling GIT to be bale to use the long paths as follows:

Step 1: Window Machine: open Powershell MAC or Linux: Open Terminal

Step 2: Issue the following command: git config --global core.longpaths true

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 100

How to undo things in
GIT?

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 101

How to undo things in GIT

• There are times when you (or a teammate) make a change
that is not desired or causes your robot code to not work.

• Other times you forgot to include a certain change, or
made a mistake in your commit message.

• In these situations, it’s common to want to rollback,
or undo, a change made by you or your team.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 102

How to undo things in GIT

• How do I remove all uncommitted changes in
my working directory?

• One possible action to take in Git is to undo changes
you made locally, but have not yet committed or
pushed up to your remote repo.

• Note: An important distinction with uncommitted changes is that
you cannot recover the changes you discard with the commands
below. As they have not been committed, Git has no record of the
changes.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 103

How to undo things in GIT

• To undo all the changes you’ve introduced since the last
commit, use the following command — Use with care:

• This command reverts the repo (local repo on your
computer) to the state of the HEAD revision, which is the
last committed version. Git discards all the local
changes you made since that point.

git reset --hard

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 104

How to undo things in GIT
Any changes made in your local copy are undone, and your local
repository is back at the last committed and synchronized master
version

105

How to undo things in GIT

• More common, you may want to only discard the
changes to one file in the local repo. You can do this
with the checkout command:

• This will reset the specified file to the last committed
version in your local repo.

git checkout -- path/to/the/file.txt

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 106

How to undo things in GIT

Assume that the local file opcontrol.c has changes in it you want to
discard and roll back for just that file to a previous version as checked
into the repo.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 107

How to undo things in GIT
Issue the: git checkout <path\filename> command to revert the specified file
in the local repo back to the last version in the MASTER repo.

git checkout src\opcontrol.c

108

How to undo things in GIT

After the particular file “rollback” the opcontrol.c file shows the previous
code locally added removed

109

How to undo things in GIT

• How do I fix a message of a commit I just
made?

• First, Git includes the ability to amend the most
recent commit message.

• Note that this is not a specific commit in your history,
but simply the very last commit. The usage is straight
forward:

git commit --amend -m “Add your correct commit message here.”
Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 110

How to undo things in GIT
Issue the: git commit --amend -m “Add your correct commit message here.”
command to update/adjust your previous commit message

Note: can only be done for the last commit you made.

111

How to undo things in GIT

on gitHUB the
repository now reflects
the updated commit
message

112

How to undo things in GIT

• How do I rollback a single file to a certain
commit in history?

• This scenario is also straightforward. You can use
the git-checkout command to change a specific file
back to its state at a specific commit

• Once completed, you would then commit the change
to this file, returning it to its earlier state.

git checkout <commit_ID> path/to/the/file

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 113

How to undo things in GIT

• What is the commit ID, where do I find it?

• Every time you commit your local changes to the
repository, your commit is assigned a unique <commit
ID>

• The <commit ID> can be found a in a number of
places, in the gitHUB desktop client, using the gitHUB
web client, using a local git -log command.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 114

How to undo things in GIT

• Using gitHUB desktop client to find <commit ID>

• You can use the gitHUB desktop client to both find the
<commit ID> you potentially want to roll back to

• Find a particular file version to roll back too

• Explore the changes mades as part of a particular
commit

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 115

How to undo things in GIT
in the gitHUB desktop client open the local repository for your project - in this case prosv5-
teachPREP

116

How to undo things in GIT
Click on the the ‘History’ tab, to see a chronological list of all commits.

Chronological list
of all commits.

117

How to undo things in GIT
Click on the the ‘History’ tab, to see a chronological list of all commits.

Select a commit
for deeper
analysis

Select a changed
source file for
inspection

Changed source
code - note add
(+) and
subtractions (-)

<commit ID>

118

How to undo things in GIT
Once the file to roll back is identified, issue the git checkout <commit ID> filename command. In
this case git checkout 3283a8e src/auto.c which will rollback the auto.c file to the one in the repo
committed with the the commit ID 32c3a8e

119

How to undo things in GIT

• Using GIT command line utility to find <commit ID>

• You can use the GIT desktop client command line utility
to find the <commit ID> you potentially want to roll
back to

git log --pretty=format:"%h - %an, %ar : %s"

<commit ID>

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 120

How to undo things in GIT

• One additional way to find the <commit ID> is using the
GitHub web interface for the remote repository

• This option naturally only works if you have established
a remote repository on gitHUB or some other cloud
based repository server

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 121

How to undo things in GIT
Finding the <commit ID> on gitHUB:

Step 1: browse to the repository for example: github.com/gtsetup/cortex-teachCWU

Step 2: click on the tab/button showing the number of commits for the repository

122

How to undo things in GIT
Commit history in chronological order with the commit message

<commit ID> for
each commit to the
repository

Click to browse
the files/state of
the repository at
a particular
<commit ID>
moment in time

Assume we
want to see the
commit history
of this state to
determine if this
is the place to
roll back to.

123

How to undo things in GIT
When we clicked on the <commit ID> we will be brought to the repository state as of that moment
in time. We can now browse any of it’s files.

124

How to undo things in GIT
In this case we opened src/auto.c for the given <commit ID> and we can look if this is the state
we want to recover too.

125

How to undo things in GIT
Commit history in chronological order with the commit message

<commit ID> for
each commit to the
repository

Click to browse
the files/state of
the repository at
a particular
<commit ID>
moment in time

click here to see
the commit
history - i.e
what field
changed and
what changed
within it

126

How to undo things in GIT
One of the files changed is src/auto.c Changed lines are highlighted, a line

starting with a + means it is added,
one starting with a - means it has been
removed since the last commit.

127

How to undo things in GIT
Once the file to roll back is identified, issue the git checkout <commit ID> filename command. In
this case git checkout 3283a8e src/auto.c which will rollback the auto.c file to the one in the repo
committed with the the commit ID 32c3a8e

128

How to undo things in GIT

• IMPORTANT: after you have rolled back a file or as
shown next a whole repo, and make a subsequent
change to the rolled back project, you must commit
these changes in order for them to be recorded and
ensure the repo reflects at your desired change.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 129

How to undo things in GIT
• How do I revert changes introduced by a specific

commit?

• When you need to undo something you’ve committed, you
have a couple of good options.

• Both of the options will only affect the current HEAD, so be
sure to confirm that you have the intended branch checked
out.

git revert <commit_ID>

git reset —hard <commit_ID>

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 130

How to undo things in GIT
• Revert:

• As it sounds, the revert command changes all the files for a
specific commit back to their state before that commit was
completed.

• It’s important to note the mechanics of this command. The
reverted commit is not deleted. Rather, Git creates a new
commit with the included files reverted to their previous state.

• So your version control history moves forward while the state
of your files moves backwards.

git revert <commit_ID>

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 131

How to undo things in GIT
• Reset:

• This option is a little different than a revert. It resets the status of
your repo (working HEAD) to an older revision. It’s a true rollback
of the state of your repo.

• When you use this option, Git discards any commits between the
current state of the repo and the target commit. The branch will
then appear to stop at the commit you reset the HEAD to.

• Note: Although the commits no longer appear to be a part of your
branch history, they are not deleted. They are still stored in Git.

git reset —hard <commit_ID>

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 132

How to undo things in GIT

Assume that the current state of the repository (last commit) is reflected by the following src/auto.c
file in your project.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 133

How to undo things in GIT
Now we decide rollback (revert) the earlier commit with commit ID = c844901 using:

git rest —hard c844901 this will now move your HEAD back to this committed state and effective
have rolled back to that point in time. Any changes going forward will be based off the this state of
your repository.

134

How to undo things in GIT

The new current state of the repository (after reset —hard) is reflected by the following src/auto.c
file in your project.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 135

GIT integration with
PROS / Atom

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 136

PROS and GIT integration

• GIT is fully integrated with Atom and does the PROS
programming environment.

• When initially creating a new PROS project, you will need
to use gitHUB desktop client to initialize the REPO on
gitHUB

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 137

PROS and GIT integration
When a new project is created in PROS - the there will be no GIT repository until that is separately
created. This can be done right in the RPOS / Atom interface.

138

PROS and GIT integration
If the GIT pane does not show initially, it can be toggled by goign to View -> ToggleGit Tab

139

PROS and GIT integration
To initialize the repository:

Click the Create repository button then point to the path where your repository is located and
click +init

140

PROS and GIT integration
To create the remote repository - on gitHUB - open the gitHUB desktop client, and select File ->
Add Local Repository — then choose the local path of your PROS project where also your local
git repository lives.

Then ‘Add
Repository’

Point to the
PROS project
we just created
and for which
we initialized a
local repository

141

PROS and GIT integration
To create the remote repository - on gitHUB - open the gitHUB desktop client, and select File ->
Add Local Repository — then choose the local path of your PROS project where also your local
git repository lives.

Now publish the
Repository - this
will initialize it on
gitHUB

142

PROS and GIT integration
Now we have added the local repository to the gitHUB desktop system, and we are ready to
initialize the remote repository by clicking ‘Publish repository’

Add brief
description of
purpose

Select optional
Organization -
depends on
type of gitHub
account you
have, same with
the ability to
keep repository
private

Publish the
repository

143

PROS and GIT integration
When the repository is published you will receive a status of: Cannot publish unborn HEAD

We now MUST
fist make an
initial commit to
the local
repository in
PROS

144

PROS and GIT integration

Once initialized, you will
likely see a number of
unstated files

Files must be stage prior to
be committed to the
repository

GIT status bar

Click ‘Stage All’ to stage
files for Commit.

145

PROS and GIT integration

Files ready to be committed
to the repository

GIT status bar

Write a Commit Message

Commit to the local
repository

NOTE: we are committing field only to our local
repository at this point, we do not yet have a
repository setup on gitHUB to share our projects and
track/protect our changes in the cloud

146

PROS and GIT integration

We have our first local
commit to the repository

GIT status bar

NOTICE: (!) No remote — we
need to link our local
repository next to the a
remote repository on gitHUB

147

PROS and GIT integration
Now go back to the gitHUB client and publish the just committed local repo

Publish the
branch

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 148

PROS and GIT integration
Now in PROS the git pane should have your repo committed and pushed to gitHUB, going forward
you can now use the build in git pane in PROS to manage your push/pull actions of the repo.

Sometimes the
local repository
maybe still
‘disconnected’
from the remote
repo.

You can fix this
by right-click on
the ‘error’ and
selecting Force
Push

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 149

PROS and GIT integration
When we publish initially the repository remotely, we may receive a message stating:

(!) Unable to merge unrelated histories in this repository.

This can be fixed by issuing a special git command:

git pull origin master —allow-unrelated-histories

Open a local terminal, change to your git local repository, in our case cd prosv5-gitTest and issue
the above command to resolve the problem and have the local history synchronized with the
remote repository.

Issue git
command to
resolveIntroducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 150

git Branches in PROS
• It is often best to code for your project using branches, this

is especially the case when more the none programmer is
working on the project - most likely scenario

• Each programmer would go ahead and create / checkout a
branch of the current master.

• These branches are worked on and committed and pushed
to the remote repository

• At some point in time the branches are reviewed and merged
into the master, at which point the process repeats itself.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 151

git Branches in PROS
• The PROS integration into Atom and does integrated with git

makes creating and managing your local branch painless if you
use the following simple steps:

• Step 1: make sure you have fetched the most uptodate
master branch

• Step 2: create your local branch

• Step 3: write code, update / commit /push your local branch

• Step 4: code review - merge branches into master and
repeat.

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 152

git Branches in PROS
With your current project open and the latest master fetched, click on the ‘master’ branch button,
to go ahead and create your own local branch.

Click on
‘master’ to open
the branch
management
dialogue

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 153

git Branches in PROS
Creating your own code branch

Name your branch

Create your branch

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 154

git Branches in PROS
Write your code / fix code, save it, and then Stage All — now you are ready to commit your
changes to your repo, and subsequently push it up to the remote repo

Commit changes to
your branch

Add commit
message

Push your local
changes to the
remote repo

155

git Branches in PROS
If you now look at the gitHUB page for the repo - the remote repo storage on gitHUB - you will
notice that there are branches and various commits

Commit and Branch
commit status

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 156

git Branches in PROS
If you now look at the gitHUB page for the repo - the remote repo storage on gitHUB - you will
notice that there are branches and various commits

MASTER branch
against we will later
apply the branch
changes

your committed branch

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 157

git Branches in PROS
Now that we have branches we can go ahead and decide to merge them into the master. We do
this by comparing the branch with the master and requesting a pull from the branch into the
master

initiate a compare & pull

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 158

git Branches in PROS
Step 1: check if we can merge - if not resolve the conflicts

Step 2: write reason for merge and short description

Step 3: create the pull request to initiate the merge

initiate merge through
pull request

Check if able to merge
or resolve conflicts

Name and explain merge
reason

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 159

git Branches in PROS
When the pull request is made, you need to complete one more step, if fully merging the pull
request into the master

Complete merge pull
request

Double check their are
no conflicts, if so resolve
them.

160

git Branches in PROS
When the merge completes, you will be given a view of it’s current status, including the ability to
remove the just merged in branch

Optional delete Branch

Merge completed

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 161

git Branches in PROS
gitHUB shows that the branch which was successfully merged into the master was deleted.

Notice even now you
can still recover.Branch has been deleted

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 162

git Branches in PROS
Now in PROS in your project, change back to the ‘master’ branch, and initiate a pull/fetch to make
sure that the local master matches the remote repo master.

Master is now synched
locally

Merge completed — change back
to master and issue fetch pull
request

Introducing PROS 3 — GIT / GIThub — V1.0 07/07/2019 163

